((8x^3)/((x^2+49)^3))-(6x/((x^2+49)^2))=0

Simple and best practice solution for ((8x^3)/((x^2+49)^3))-(6x/((x^2+49)^2))=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((8x^3)/((x^2+49)^3))-(6x/((x^2+49)^2))=0 equation:


D( x )

(x^2+49)^3 = 0

(x^2+49)^2 = 0

(x^2+49)^3 = 0

(x^2+49)^3 = 0

1*x^2 = -49 // : 1

x^2 = -49

(x^2+49)^2 = 0

(x^2+49)^2 = 0

1*x^2 = -49 // : 1

x^2 = -49

x in (-oo:+oo)

(8*x^3)/((x^2+49)^3)-((6*x)/((x^2+49)^2)) = 0

(8*x^3)/((x^2+49)^3)-6*x*(x^2+49)^-2 = 0

(8*x^3)/((x^2+49)^3)+(-6*x)/((x^2+49)^2) = 0

(8*x^3)/((x^2+49)^3)+(-6*x*(x^2+49))/((x^2+49)^3) = 0

8*x^3-6*x*(x^2+49) = 0

2*x^3-294*x = 0

2*x^3-294*x = 0

2*x*(x^2-147) = 0

1*x^2 = 147 // : 1

x^2 = 147

x^2 = 147 // ^ 1/2

abs(x) = 7*3^(1/2)

x = 7*3^(1/2) or x = -(7*3^(1/2))

2*x*(x-7*3^(1/2))*(x+7*3^(1/2)) = 0

(2*x*(x-7*3^(1/2))*(x+7*3^(1/2)))/((x^2+49)^3) = 0

(2*x*(x-7*3^(1/2))*(x+7*3^(1/2)))/((x^2+49)^3) = 0 // * (x^2+49)^3

2*x*(x-7*3^(1/2))*(x+7*3^(1/2)) = 0

( 2*x )

2*x = 0 // : 2

x = 0

( x+7*3^(1/2) )

x+7*3^(1/2) = 0 // - 7*3^(1/2)

x = -(7*3^(1/2))

x = -7*3^(1/2)

( x-7*3^(1/2) )

x-7*3^(1/2) = 0 // + -7*3^(1/2)

x = -(-7*3^(1/2))

x = 7*3^(1/2)

x in { 0, -7*3^(1/2), 7*3^(1/2) }

See similar equations:

| 15x^2+30/3x^2+6 | | 6(6a-b)-3(5b-8a)= | | 38+3x+7=180 | | -29v=-9 | | y=1/3x-6 | | (2x^2)/((x^2+49)^2)=0 | | (2x^2)/((x^2+49)^2) | | (x2-3x-18)/(x+3) | | 1-(2/x^2)=1/3 | | x+6+3x+90=180 | | 2a+7a= | | -2=2x^3/5 | | 0=2x^3/5 | | 1/4(5x-6)=4 | | 3x+4=1x+5 | | X^2+5x-14=10 | | 2w-9w=28 | | 20a^2+11aw-3w^2= | | -3(-1)(-4)(-2)= | | -12-8/(-4) | | log=15.5 | | 3x^2-10xy+3y^2+x-32=0 | | y^15/z^25 | | -40-30= | | 11-4x=-8x+15 | | 2x^3+8x^2-4x+16=0 | | -2=-(x+1) | | 18-15=15 | | 2-5=11 | | -20=-x-2-8x | | -30+(-60)= | | 7v+3v=10 |

Equations solver categories